Integrative Temporo-Spatial, Mineralogic, Spectroscopic, and Proteomic Analysis of Postnatal Enamel Development in Teeth with Limited Growth
نویسندگان
چکیده
Tooth amelogenesis is a complex process beginning with enamel organ cell differentiation and enamel matrix secretion, transitioning through changes in ameloblast polarity, cytoskeletal, and matrix organization, that affects crucial biomineralization events such as mineral nucleation, enamel crystal growth, and enamel prism organization. Here we have harvested the enamel organ including the pliable enamel matrix of postnatal first mandibular mouse molars during the first 8 days of tooth enamel development to conduct a step-wise cross-sectional analysis of the changes in the mineral and protein phase. Mineral phase diffraction pattern analysis using single-crystal, powder sample X-ray diffraction analysis indicated conversion of calcium phosphate precursors to partially fluoride substituted hydroxyapatite from postnatal day 4 (4 dpn) onwards. Attenuated total reflectance spectra (ATR) revealed a substantial elevation in phosphate and carbonate incorporation as well as structural reconfiguration between postnatal days 6 and 8. Nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) demonstrated highest protein counts for ECM/cell surface proteins, stress/heat shock proteins, and alkaline phosphatase on postnatal day 2, high counts for ameloblast cytoskeletal proteins such as tubulin β5, tropomyosin, β-actin, and vimentin on postnatal day 4, and elevated levels of cofilin-1, calmodulin, and peptidyl-prolyl cis-trans isomerase on day 6. Western blot analysis of hydrophobic enamel proteins illustrated continuously increasing amelogenin levels from 1 dpn until 8 dpn, while enamelin peaked on days 1 and 2 dpn, and ameloblastin on days 1-5 dpn. In summary, these data document the substantial changes in the enamel matrix protein and mineral phase that take place during postnatal mouse molar amelogenesis from a systems biological perspective, including (i) relatively high levels of matrix protein expression during the early secretory stage on postnatal day 2, (ii) conversion of calcium phosphates to apatite, peak protein folding and stress protein counts, and increased cytoskeletal protein levels such as actin and tubulin on day 4, as well as (iii) secondary structure changes, isomerase activity, highest amelogenin levels, and peak phosphate/carbonate incorporation between postnatal days 6 and 8. Together, this study provides a baseline for a comprehensive understanding of the mineralogic and proteomic events that contribute to the complexity of mammalian tooth enamel development.
منابع مشابه
Variation in elemental intensities among teeth and between pre- and postnatal regions of enamel.
Microspatial analyses of the trace element composition of dental enamel are made possible using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Fine spatial resolution, multielement capabilities, and minimal sample destruction make this technique particularly well-suited for documenting the distribution of elements in sequentially calcifying layers of enamel. Because de...
متن کاملSympathetic Gangliogenesis and Temporo-Spatial Glycoconjugates’s Terminal Sugars Distribution
Lectin binding histochemistry was performed on the developing sympathetic ganglionic cells to investigate the distribution and density of defined carbohydrate terminals on the cell surface glycoproteins during autonomic system morphogenesis. Sprague-Dauley rat embryos from 9th gestational day to birth were fixed and paraffinized. Serial sections of these specimens were incubated with different ...
متن کاملPreterm infants--odontological aspects.
Preterm birth is associated with medical complications and treatments postnatally and disturbances in growth and development. Primary and permanent teeth develop during this postnatal period. The overall aim of the present thesis was to elucidate the effects of preterm birth and postnatal complications on oral health and the dentoalveolar development during adolescence, and to study the effects...
متن کاملHuman deciduous mandibular molar incremental enamel development.
Quantitative studies of incremental markings retained within human enamel have reconstructed the duration and rate (crown and cusp formation times, initiation and completion, daily enamel secretion rates) of permanent tooth development. This approach has provided one way of estimating human age-at-death, and facilitated comparative dental studies of primate evolution. Similar applications from ...
متن کاملPattern Analysis of City-Spatial Growth by Spatial Statistics (Case Study: Gorgan City)
Urban planning has gone from the past to the present day to a greater extent based on physical factors, to the extent that the basis of urban planning plans and urban plans influenced urban development and physical spaces. It's The city is the product of complex economic and social relations and its spatial heterogeneity reflects the processes of widespread socio-economic-cultural-social ...
متن کامل